Comparative Analysis of Partial Product Addition in Vedic UrdhvaTiryakbhyam Multiplier
M. A. Sayyad1* and B. S. Agarkar2
1,2E&TC Engg. Department, SRES’s Sanjivani COE, Kopargaon, Savitribai Phule Pune University, Pune, India

Abstract
Multiplication is one of important operation performed in many Digital signal processing applications. Hence the performance of the multiplier will affect the overall performance of the DSP processor. The methods like booth multiplier, array multiplier are used. Vedic multiplication technique had proved its importance in getting the speed of multiplication. It is required to add the generated partial products quickly, to generate the result of multiplication faster. To add the generated partial products different schemes are used such as ripple carry adders, carry look-ahead adders, carry save adders etc. This paper aim to use the UrdhvaTiryakbhyam method of vedic multiplication and present the comparison of different partial product addition methods. The comparison shows that the proposed method with half adders and full adders is better alternative if little increase in propagation delay is accepted at the cost of reduced area i.e. slices and LUTs the proposed method of half adders and full adders is better choice for addition of partial products. Also the power dissipation of this method is less as compared to other methods.
Keywords: Vedic mathematics, UrdhvaTiryakbhyam multiplier, Partial Products(PP) Ripple Carry Adder (RCA), Carry Look-ahead Adder (CLA).

 *Author for Correspondence E-mail: sayyadma@yahoo.com
INTRODUCTION:
Multiplication of the input signals is required for linear filtering, frequency domain processing with FFT, voice or image processing application, encryption, and decryption. DSP processors with multiplier blocks carry out this multiplication. The effectiveness of the multiplier block is critical element in determining the performance of the entire system. The shift and add approach is the basic for the hardware implementations of standard array multipliers. Half adders and full adders are used in this method to sum the partial products; however, the performance is low due to a significant propagation delay in carry propagation. It's essential to add the partial products with a shorter propagation delay in order to increase speed of the multiplication. Use of Vedic mathematics methods will give the better results.
Sri Bharti Krishna Tirathaji developed the Vedic sutras between 1911 and 1918 [1]. There are 16 primary sutras; UrdhvaTiryakbyham is the most popular of these. The method of UrdhvaTiryakbyham will be the better option, the performance of these multiplier can be verified using hardware description language(HDL) and implementing them on the reconfigurable hardware. N×N multiplication [2-3] applicable for 4,8,16 and 32-bit multiplication is explained. This method requires not as much of computation time for finding the multiplication output for N×N bit. Vedic UrdhvaTiryakbyham [4] multiplier implemented using FPGA and ASIC. For implementation they used ASIC design based on standard cell, with which vedic multiplier is implemented in 180 nm CMOS technology, This resulted in speed of 5.2 ns, power 257 µW, and it is using area of 1,117 cells. UrdhvaTiryakbyham multiplier is effectively implemented for decimal number system [5], complex number system [6] and floating point numbers [7-8]. The advantage of power dissipation of the reversible logic [9-11] and adiabatic logic [12-13] is successfully utilized in Vedic multiplier to reduce the power and design of low power high speed Vedic multiplier.
In order to increase the speed of multiplication it is required to add the partial product quickly. The use of increment by one (IBO) block along with carry save adder [14] and modified adder [15] resulted in reduced delay in multiplication. As adding these partial products with less delay is important, many researchers have used carry save adders [16], carry lookahead adders [17], carry select adder [18], multiplexer based adders [19-20], barrel shifter [21] and arithmetic adders [22] to improve the delay in multiplication. The partial product addition schemes [23] are compared for area, delay and power. This paper presents the comparison of different methods of partial products addition in Vedic UrdhvaTiryakbyham multiplier along with the proposed hierarchical arrangement of multiplication using half adders and full adders.
ARRAY MULTIPLIER:
The multiplication any two numbers are performed by following procedure for binary numbers which is similar to decimal numbers.
[image: C:\Users\LENOVO\Pictures\chapter 1 arraymulti figure.jpg]
Fig. 1: 4 × 4 Bit Multiplier
In figure 1 each partial product term e.g. X0Y0, X1Y0… represents a bit which is result of bit by bit multiplication. This bit by bit multiplication is performed with the help of AND gate. As the array multiplier is based on simple shift and add multiplication. All the partial products are added with the full adders and half adders as shown in figure 2 for the 4×4 bit multiplication
[image:]
Fig. 2: 4 × 4 Bit Array Multiplier
This 4×4 bit array multiplier is shown in Fig. 2 uses AND gates for bit by bit multiplications. For 4×4 bit multiplication sixteen AND gates are required. Each row of 4 AND gates form one row of partial products, these partial products are added using full adders and half adders. The bits P7 to P0 are 8 result bits shown in Fig. 2. For 4×4 bit multiplication it needs 4 half adders and 8 full adders.
Similar scheme of array multiplier is used for 8 and 16 bit multiplication. The 8 bit multiplier will require 8 half adders and 48 full adders whereas 16 bit array multiplier will use 16 half adders and 244 full adders.

VEDIC URDHVATIRYAKBHYAM MULTIPLIER:
Vedic Multiplier based on UrdhvaTiryakbhyam (Vertical and Crosswise) performed using following procedure. The 2×2 bit multiplication will produce the result of 4 bits. The multiplier is A=A1A0 and multiplicand is B=B1B0. Let the result is “P3P2P1P0”.
P0= A0B0
C1P1=A1B0 + A0B1
C2P2=A1B1 + C1
P3=C2
The above procedure of vedic multiplier can be implemented using 2 half adders as shown in Fig. 3
[image:]
Fig. 3: 2×2 Bit Vedic Multiplier With Half Adders
URDHVATIRYAKBHYAM VEDIC MULTIPLIER WITH RCA ADDERS:
The 4 x 4 bit multiplication can be performed as, let the multiplier is A3A2A1A0 and the multiplicand is B3B2B1B0 by following the procedure of Urdhva-Tiryakbhyam multiplier the result will be of 8 bits which is represented by P7…P0. The partial products of this UT multiplier are shown in Fig. 4
[image: C:\Users\LENOVO\Pictures\UT4bitmultifig.jpg]
Fig. 4: 4 × 4 Bit Multiplication With Urdhva-Tiryakbhyam
P0= A0B0
C1P1=A1B0 + A0B1
C3C2P2=A2B0 + A1B1 + A0B2 + C1
C5C4P3=A3B0 + A2B1 + A1B2 + A0B3 + C2
C7C6P4 = A3B1 + A2B2 + A1B3 +C3 + C4
C9C8P5=A3B2 + A2B3 +C5 +C6
C10P6=A3B3 + C7 +C8
P7=C9 +C10
In this work the hierarchical approach is used. The 4×4 bit multiplication is performed by grouping 2 bits multipliers and 2 bit multiplication by Urdhva-Tiryakbhyam multiplier as shown in Fig. 5
[image: C:\Users\LENOVO\Pictures\UT 4 bit multi figure3.jpg]
Fig. 5: 4×4 Bit Multiplier Using Four 2×2 Bit Multiplication
The partial product of the Fig. 5 are added with the help of 4 bit ripple carry adder (RCA) adder. The design of 4 bit ripple carry adder (RCA) is shown in Fig. 6.
[image: C:\Users\LENOVO\Pictures\RCA 4 bit figure.jpg]
Fig. 6: 4 Bit Ripple Carry Adder (RCA)
The method of multiplication by using the RCA adder is shown in Fig. 7. Here Multiplier and multiplicand are shown by A3 A2 A1 A0 and B3 B2 B1 B0. The output bits are as P7, P6, P5, P4, P3, P2, P1 and P0.
[image: C:\Users\LENOVO\Pictures\UT 4 bit multi figure4.jpg]
Fig. 7: 4×4 Bit Multiplier Using Four 2×2 Bit Multiplier and 4 Bit RCA Adder
Out of the 4 bits produced by the 2 bit multiplier block of A1A0 × B1B0, 2 bits will be the result bits and the remaining 2 bits will be carry bits for the following block. The next adder will combine the carry from the preceding 2 bit multiplication with the partial products of the 2 bit multiplications A3A2 × B1B0 and A1A0 × B3B2. The carry produced by this addition will be combined with the output of A3A2 × B3B2 two-bit multiplication. Similar scheme is used for implementation of 8 × 8 bit and 16×16 bit multiplication which require three 8 bit and 16 bit ripple carry adders(RCA) to add the partial products as shown in Fig. 8.
[image: C:\Users\LENOVO\Pictures\UT 4 bit multi figure5.jpg]
Fig. 8: 16×16 Bit Urdhvatiryakbhyam Vedic Multiplier With RCA
UT VEDIC MULTIPLIER WITH CARRY LOOKAHEAD ADDER (CLA):
For fast addition of partial products, we used the carry look ahead adders so that the delay can be further be improved. The 4 bit UT multiplier with CLA adders is designed with 2 bit multipliers and 4 bit carry look ahead circuit is shown in Fig. 9
[image:]
Fig. 9: 4 Bit Carry Look Ahead Adder (CLA)

Where
P1= A1 XOR B1
G1= A1 AND B1
S1= A1 XOR B1 XOR C0 = P1 XOR C0
P2= A2 XOR B2
G2= A2 AND B2
S2= A2 XOR B2 XOR C1 = P2 XOR C1, where C1=A1 AND B1
P3= A3 XOR B3
G3= A3 AND B3
S3= A3 XOR B3 XOR C2 = P3 XOR C2, where C2= G2 or (P2 AND G1);
P4= A4 XOR B4
G4= A4 AND B4
S4= A4 XOR B4 XOR C3 = P4 XOR C3, where C3= G3 or (P3 AND G2) or (P3 AND P2 AND G1);
Final carry out C4= G4 or (P4 AND G3) or (P4 AND P3 AND G2) or (P4 AND P3 AND P2 AND G1)
 The 16×16 bit vedic multiplier with carry look ahead adders is shown in Fig. 10. This implementation of carry look ahead adder requires complex carry generate and carry propagate logic shown in Fig. 9.
[image: C:\Users\LENOVO\Pictures\UT 4 bit multi figure6.jpg]Fig. 10: 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier With CLA
UT VEDIC MULTIPLIER WITH RCA CLA ADDERS:
The implementation of carry look ahead adder requires complex carry generate and carry propagate logic if numbers of bits are increased. To decrease the complexity of CLA adder the RCA adder technique is used for group of 4 bit CLA adder. This adder is used in place of 16 bit CLA adder and named as 16 bit RCACLA adder as shown in Fig. 11. In this method instead of using the RCA adder or CLA adder to add the generated partial product the grouping for 4 bit CLA adder is used. For 4 bit multiplication there is no change in the implementation it is similar to the CLA adder. For 8 and 16 bit multiplication the required 8 bit and 16 bit adder is designed by the scheme shown in Fig. 11. The RCA CLA adder is used in the 16 x 16 bit UrdhvaTiryakbhyam multiplier to add the generated partial products as shown in Fig. 12.
[image: C:\Users\LENOVO\Pictures\CLA 4 bit figure.jpg]
Fig. 11: 16 Bit RCA CLA Adder
[image: C:\Users\LENOVO\Pictures\UT 16bit RCACLA.jpg]
Fig. 12: 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier With RCA CLA Adder

UT VEDIC MULTIPLIER WITH HALF ADDERS & FULL ADDERS:
Vedic multipliers implemented with UrdhvaTiryakbyham sutras are having cascade structure. To implement 4×4 bit multiplier four 2×2 multiplier blocks are used and three 4 bit adders are used to add partial products. Similarly, to implement 16×16 bit multiplier four 8×8 bit multiplier blocks are used and three 16 bit adders are used to add partial products. The use of three RCA adders for partial products addition may lead to more delay in output. In proposed method the arrangement of half adder and full adder is used add partial products for improvement in delay, area and power. The use of RCA adders in 16 bit multiplier internally uses 48 full adders but the arrangement of half adder and full adder shown in Fig.13 uses 31 full adders, 7 half adders and XOR gate.
[image:]
Fig. 13: 16×16 Bit UT Vedic Multiplier With HA And FA
IMPLEMENTATION:
The array multiplier and vedic multipliers with ripple carry adders, carry lookahead adders and with half & full adders are implemented. These are implemented in Xilinx ISE 14.7 with VHDL code. The code for above design of multipliers written in structural modeling style. The VHDL code is synthesized using Xilinx Synthesis Tool (XST). The synthesized circuit is shown for all designs form Fig. 14 to Fig. 18.
[image: C:\Users\LENOVO\Pictures\Screenshots\Screenshot (185).png]
Fig. 14: Synthesis of 16×16 Bit Array Multiplier
[image: C:\Users\LENOVO\Pictures\Screenshots\Screenshot (192).png]
Fig. 15: Synthesis of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with RCA
[image: C:\Users\LENOVO\Pictures\Screenshots\Screenshot (198).png]
Fig. 16: Synthesis of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with CLA
[image: C:\Users\LENOVO\Pictures\Screenshots\Screenshot (203).png]
Fig. 17: Synthesis of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with CLARCA
[image: C:\Users\LENOVO\Pictures\Screenshots\Screenshot (202).png]
Fig. 18: Synthesis of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with Half and Full Adders
The designed VHDL code is simulated using Xilinx ISim simulator for all designs. The simulation wave form for these designs of UT Vedic multiplier with different partial product addition schemes are shown in Fig. 19 to Fig. 23.
[image: C:\Users\LENOVO\Pictures\Screenshots\array16bit.png]
Fig. 19: Simulation of 16×16 Bit Array Multiplier
[image: C:\Users\LENOVO\Pictures\Screenshots\UT_RCA_16bit.png]
Fig. 20: Simulation of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with RCA
[image: C:\Users\LENOVO\Pictures\Screenshots\UT_CLA_16bit.png]
Fig. 21: Simulation of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with CLA Adders
[image: C:\Users\LENOVO\Pictures\Screenshots\UT_CLSRCA_16bit.png]
Fig. 22: Simulation of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with CLARCA Adders

[image: C:\Users\LENOVO\Pictures\Screenshots\UT_HAFA_16bit.png]
Fig. 23: Simulation of 16×16 Bit Vedic UrdhvaTiryakbhyam Multiplier with Half and Full Adders

RESULTS :
Synthesis of the designed multiplier was done using Xilinx ISE 14.7. and the report related to Number of Slices, Number of 4 input LUTs and delay is presented in Table 1 to Table 3. For calculation of power dissipation XPower analyzer tool is used, the switching activity data can be written at the time of simulation after place and route(PAR). This switching activity data file is used by XPower analyzer to calculate total power. The power calculations will help to optimize the power during design. In our design the simulation inputs are kept same for array and vedic multiplier so that there should be same effect of dynamic power on the circuits. The total power dissipation of each multiplier is shown in Table 1 to Table 3.
Table 1: Comparison of 4 Bit Array and UT Vedic Multiplier
	Type of multiplier
	Total number of Slice LUTs:
	LUT with number of input

	Total delay in ns
	delay in logic
	delay in route
	Power (W)

	
	
	2
	3
	4
	5
	6
	
	
	
	

	Array 4 bit
	23
	6
	-
	4
	-
	13
	13.263
	5.745
	7.518
	0.023

	UrdhvaTiryakbhyam 4 bit multiplier with RCA adder
	25
	1
	-
	12
	6
	6
	12.096
	5.491
	6.605
	0.021

	UrdhvaTiryakbhyam 4 bit multiplier with CLA adder
	24
	3
	-
	7
	-
	14
	13.702
	5.764
	7.938
	0.023

	UrdhvaTiryakbhyam 4 bit multiplier with CLA RCA adder
	24
	3
	-
	7
	-
	14
	13.702
	5.764
	7.938
	0.023

	UrdhvaTiryakbhyam 4 bit multiplier with Half adders and Full adders
	26
	7
	-
	7
	-
	12
	11.978
	5.51
	6.468
	0.020

Table 2: Comparison of 8 Bit Array and UT Vedic Multiplier
	Type of multiplier
	Total number of Slice LUTs:
	LUT with number of input

	Total delay in ns
	delay in logic
	delay in route
	Power (W)

	
	
	2
	3
	4
	5
	6
	
	
	
	

	Array 8 bit
	93
	12
	-
	18
	2
	61
	28.043
	8.516
	19.527
	0.038

	UrdhvaTiryakbhyam 8 bit multiplier with RCA adder
	130
	4
	6
	50
	32
	38
	21.052
	7.28
	13.772
	0.034

	UrdhvaTiryakbhyam 8 bit multiplier with CLA adder
	128
	13
	3
	32
	7
	73
	22.236
	7.269
	14.967
	0.037

	UrdhvaTiryakbhyam 8 bit multiplier with CLA RCA adder
	128
	11
	3
	34
	13
	67
	22.619
	7.511
	15.108
	0.037

	UrdhvaTiryakbhyam 8 bit multiplier with Half adders and Full adders
	128
	25
	9
	29
	10
	55
	19.374
	6.977
	12.397
	0.035

Table 3: Comparison of 16 Bit Array and UT Vedic Multiplier
	Type of multiplier
	Total number of Slice LUTs:
	LUT with number of input

	Total delay in ns
	delay in logic
	delay in route
	Power (W)

	
	
	2
	3
	4
	5
	6
	
	
	
	

	Array 16 bit
	365
	13
	
	92
	8
	252
	55.351
	13.539
	41.812
	0.066

	UrdhvaTiryakbhyam 16 bit multiplier with RCA adder
	578
	17
	28
	204
	155
	174
	38.239
	9.543
	23.696
	0.062

	UrdhvaTiryakbhyam 16 bit multiplier with CLA adder
	632
	56
	23
	139
	56
	358
	35.12
	9.763
	25.357
	0.067

	UrdhvaTiryakbhyam 16 bit multiplier with CLA RCA adder
	572
	40
	24
	141
	77
	290
	38.086
	10.294
	27.792
	0.066

	UrdhvaTiryakbhyam 16 bit multiplier with Half adders and Full adders
	570
	101
	41
	123
	70
	235
	29.89
	9.225
	20.665
	0.061

[bookmark: _GoBack]CONCLUSION:
16 bit Vedic multiplier implemented with RCA adders had a propagation delay that was 30.9% better than array multiplier but had 36.8% more slice LUTs. Carry lookahead (CLA) adders are used in place of RCA adders to further reduce delay. The propagation time was further reduced by 8.15 % as a result of this implementation with the CLA adder, but the area, or the number of slices and LUTs, increased by 8.54%. Due to the intricate circuits utilized to generate carry propagate and carry generate, the Vedic multiplier with CLA adder is faster but has incerase in slices and LUTs. For a group of four CLA addres, the RCA adder approach is utilized to simplify the circuit at the expense of compromising latency.
The outcome demonstrates that the utilization of slice LUTs is reduced in 16 bit multi with RCA CLA adder, however the technique of RCA CLA adders has little effect on delay and power. The propagation time was reduced by 45.9 % and 21.8 %, respectively, utilizing the half adder and full adder methods presented as opposed to array multiplier and vedic multiplier with RCA adders. But the propagation delay of the suggested approach is roughly equivalent to that of the vedic multiplier with CLA adders. But among all multiplier implementations, the suggested method of half adders and full addres had the lowest power dissipation. The suggested implementation requires 1.6%, 8.95%, and 7.46% less power than the vedic multiplier with RCA adders, CLA adders, and RCA CLA adders, respectively.
For the 16 × 16 bit Vedic multiplier and array multipliers, the performance parameters of the multiplier, such as delay, area, and power dissipations, were calculated. In compared to an array multiplier, it has been found that a 16-bit Vedic multiplier with half-and-full adders and carry lookahead adders performs roughly 45.9 % and 36.5% faster, respectively. The suggested method of half adders and full adders is a preferable option for addition of partial products if a slight increase in propagation delay is allowed at the expense of reduced area, i.e. slices and LUTs. Additionally, the proposed technique uses less power than all other implementations. Vedic multiplier is used for fast multiplication at the same time if there is need of small area and less power the proposed method is a better alternative for addition of partial products.

REFERENCES:

[1] Jagadguru Swami Shri Bharati Krishana Tirthaji Maharaja, “Vedic Mathematics,” Motilal Banarsidass Publishers Private Limited New Delhi, 1965.
[2] Shamim Akhter, “VHDL Implementation of Fast N × N Multiplier Based On Vedic Mathematic,” in 2007 18th European Conference on Circuit Theory and Design, pp. 472–475, 2007.
[3] Honey Durga Tiwari, G. Gankhuyag, Chan Mo Kim and Y. B. Cho, “Multiplier design based on ancient Indian vedic mathematics,” in 2008 International SoC Design Conference, vol. 02, pp. II–65–II–68, 2008.
[4] K. B. Jagannatha, H. S. Lakshmisagar and G. R. Bhaskar, “FPGA and ASIC implementation of 16-bit vedic multiplier using urdhva triyakbhyam sutra,” in Proceedings of International Conference, ICERECT 2012, Lecture Notes in Electrical Engineering, vol. 248, pp. 31–38, 2014.
[5] Prabir Saha, A. Banerjee, A. Dandapat and P. Bhattacharyya, “Design of high speed vedic multiplier for decimal number system,” in Progress in VLSI Design and Test (H. Rahaman, S. Chattopadhyay, and S. Chattopadhyay, eds.), (Berlin, Heidelberg), pp. 79–88, Springer Berlin Heidelberg, 2012.
[6] Laxman P. Thakare, A. Y. Deshmukh and Gopichand D. Khandale, “VHDL implementation of complex number multiplier using vedic mathematics,” in Proceedings of International Conference on Soft Computing Techniques and Engineering Application, Advances in Intelligent Systems and Computing, vol. 250, pp. 403–410, 2014.
[7] S. Anjana, C. Pradeep and P. Samuel, “Synthesize of high speed floating-point multipliers based on vedic mathematics,” Procedia Computer Science, vol. 46, pp. 1294–1302, 2015. Proceedings of the International Conference on Information and Communication Technologies, ICICT 2014, 3-5 December 2014 at Bolgatty Palace and Island Resort, Kochi, India.
[8] S. S. Mahakalkar and S. L. Haridas, “Design of high performance IEEE754 floating point multiplier using vedic mathematics,” in 2014 International Conference on Computational Intelligence and Communication Networks, pp. 985–988, 2014.
[9] Rakshith T. R. and Rakshith Saligram, “Design of high speed low power multiplier using reversible logic a vedic mathematical approach,” in 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 775–781, 2013
[10] N. Radha and M. Maheswari, “High speed efficient multiplier design using reversible gates,” in 2018 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–4, 2018.
[11] Ramin Barati, “High speed low power multipliers based on reversible logic methods,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 2, p. 100033, 2022.
[12] K. Dutta, S. Chattopadhyay, V. Biswas and S. R. Ghatak, “Design of power efficient vedic multiplier using adiabatic logic,” in 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–6, 2019.
[13] K. Arunkumar, P. Mangayarkarasi, B. Jackson and A. A. Juliette, “Design of high speed low power 16x16 vedic multiplier with adiabatic logic,” in 2022 8th International Conference on Smart Structures and Systems (ICSSS), pp. 1–9, 2022.
[14] Shamim Akhter and Saurabh Chaturvedi, “Modified binary multiplier circuit based on vedic mathematics,” in 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 234–237, 2019.
[15] Vijayalakshmi Bandi, “Performance analysis for vedic multiplier using modified full adders,” in 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–5, IEEE, 2017.
[16] M. N. Chandrashekara and S. Rohith, “Design of 8 bit vedic multiplier using urdhva tiryagbhyam sutra with modified carry save adder,” in 2019 4th International Conference on Recent Trends on Electronics, Information, Communication and Technology (RTEICT), pp. 116–120, 2019.
[17] Y. Harshavardhan, S. Nagaraj, S. Jaahnavi and T. M. Reddy, “Analysis of 8-bit vedic multiplier using high speed CLA adder,” in 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), pp. 128–132, 2020.
[18] D. Yaswanth, S. Nagaraj and R. Vijeth, “Design and analysis of high speed and low area vedic multiplier using carry select adder,” in 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1–5, 2020.
[19] Anbumani. V, Soviya. S, Sneha. S and Saranj. L, “Speed and Power Efficient Vedic Multiplier Using Adders With Mux,” in 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–5, 2021.
[20] Udaya Kumar, N., Bala Sindhuri, K., Subbalakshmi, U. and Kiranmayi, P, “Performance evaluation of vedic multiplier using multiplexer-based adders,” in Lecture Notes in Electrical Engineering, vol 521. Springer, Singapore., 2019.
[21] U. Pavan Kumar, A. Saiprasad Goud and A. Radhika, “FPGA implementation of high speed 8-bit vedic multiplier using barrel shifter,” in 2013 International Conference on Energy Efficient Technologies for Sustainability, pp. 14–17, 2013.
[22] Sabita Kumari and Kanchan Sharma, “Implementation of nobel vedic multiplier using arithmetic adder,” Data Intelligence and Cognitive Informatics Algorithms for Intelligent Systems. Springer, Singapore., pp. 209-216, 2022.
[23] M. A. Sayyad and D. N. Kyatanavar, "Optimization for Addition of Partial Product in Vedic Multiplier," 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 2017, pp. 1-4, doi: 10.1109/ICCUBEA.2017.8463787.

image4.jpeg
A3 A2 AL A0

B3 B2 B1 BO

A A2 Al A0

B3 B2 B1 BO

image5.jpeg
A3 A2 Al AO A3 A2 Al A0 A3 A2 Al A0

B3 B2 Bl BO B3 B2 Bl BO B3 B2 B1 BO
Each of these multiplication is of 2 x 2 bit multiplication producing the results of 4 bits
A3 A2 Al AO

B3 B2 Bl BO

‘ 4 bit result of A1A0 x B1BO

| 4 bit result of A3A2 x B1BO |

| 4 bit result of A1AO x B3B2 |

4 bit result of A3A2 x B3B2 | u
N

P7---P4 P3 P2 P1 PO

image6.jpeg
Carry Out
—]

B3 A3 B2 A2 B1 Al BO A0
1 bit Full 1 bit Full 1 bit Full 1bitFull] o
Adder Adder Adder Adder

|

s3

l

s2

|

s1

|

S0

image7.jpeg
2 x 2 bit UT 2x2bitUT 2 x 2 bit UT 2x2bitUT
Multiplier Multiplier Multiplier Multiplier
4 bit RCA adder
4 bit RCA adder
[
<5
4 bit RCA adder
e L
P7 P6 P5 P4 P3 P2 P1 PO

image8.jpeg
8138 AfLAS E@EO AfLAS 815@]38 A@AO BilBO /@AO
8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT
Multiplier Multiplier Multiplier Multiplier
16 bit RCA adder
16 bit RCA adder
[
< r
16 bit RCA adder
~ Vv
P31 .. P16 P15... P8 P7... PO

image9.png
Cin

By

A

B,

Az

Bs

As

By

E g
m m o
3 % g
s £
5
o
rvea % S
B 4
L wwwwwwwwwwww
j& 2 ¢
| (o]
.
DLl o
il & g S
,|\\ ©
.
TS — D
)3 &9
,|\
% e o
.
AA N\ O
{J -

image10.jpeg
8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT
Multiplier Multiplier Multiplier Multiplier
16 bit Carry Look-Ahead Adder
16 bit Carry Look-Ahead Adder
[
< r
16 bit Carry Look-Ahead Adder
U L
P31 .. P16 P15... P8 P7... PO

image11.jpeg
B15..B12 A15..A12

11

B11..B8 All..A8

[]

B7..B4 A7..A4

] |

B3..BO A3..A0

] |

4 bit CLA 4 bit CLA 4 bit CLA 4 bit CLA
Cabry adder adder adder adder
5$15..512 $11..58 $7..54 $3...50

image12.jpeg
8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT 8 x 8 bit UT
Multiplier Multiplier Multiplier Multiplier
16 bit RCA CLA Adder
16 bit RCA CLA Adder
[
< r
16 bit RCA CLA Adder
U L
P31 .. P16 P15... P8 P7... PO

image13.png
FASto FAL

i

Fasi
0
lc1§
FA30to FAIT HA
3 [S1¢ (513 |S14 [s1] [s17[s1] [s19 (s9| |ss| [s7| |s6| s3] [s4| s3] |s2]
1 ud [erb et e [espes] [e || el es] o] s |e2| er
i e
s
VYV Y Yy Yoy

P31 P30 P29 P2§ P27 P26 P2SP24 P23 P22 P21 P20 P19 PIS P17 P16 P15 P14 P13 P12 P11 PIO P9 P P7 P6 P5 P4 P3 P2 PI B0

XOR HATtoHAY
A

image14.png
& I5E Project Navigator (P.20131013) - EA\chapter3codesSTMJournal\array_multiplier\array_16bit_muiti\array_16bit_multiaxise - [array_16bit (RTL1)] -
Fie Edt View Project Source Process Tools Window Layout Help

DEFIE 4sDDX|wa| 223 2RIAN BT LRIPELI?
Desion woex N
[} | View: © {8 tmplementaton O 5] simiation
& [Fierarchy
@ array_16bit_multi
- €3 xcbsh9-2tqg1ad
[array_16bit - Behavioral (array_16bi

< >

2 NoProcesses Ruming

Processes: array_16bit - Behavioral ~
Design Utilties
User Constraints

Y
2

(<]

& nE Synthesize - XST ©
i @

®

HF882| v o8|

View RIL Schematic
View Technology Schematic
€) Check Syntax
-T2 Generate Post-Synthesis Sim...
& €@ Implement Design
@ Translate
QA Map ©
& Strt E3 Desgn) Fies [Lbraries | & ‘Design Summary (Implemented) [<JEd array_tébit.ngri1 array_16bit (RTLY) aJ

View by Category. ~O8x
Design Objects of Top Level Block Properties: (flo Selection)

Instances =] [pins ~ | [signais “ | [eme ~ Value
LD 1< & amay_T6bit & amay_T6bit
D i<l

D X115 .

[l Corsde © Eros) Worings 8 FrdmFlsResds | viewby Category

H £ Type to search Q/

[-17272,25868]

image15.png
& ISE Project Navigator (P.20131013) - E:\chapter3codesSTMIournal\UT_with_RCA\UT_16bit_multi\UT_16bit_multi.xise - [UT_16bit (Tech1)] -
Fie Edt View Project Source Process Tools Window Layout Help

DEF L 4sDDX|wa| 223 2RIAN BT LRIPELI?

Desion woex N

3} [Vew: © ¥ nlementaton O [smuaton |37

& | Hierarchy =

e X

& 12

€ UT 16t muti
& €1 xchshd-2tqg1dd
[UT_16bit - Behavioral (UT_16bit

&
4
0
m .
< >
P | 82 NoProcesses Running i
74t [rocesses: UT_t6bit - Behavioral Alg
2| X Design Summany/Reports
o F oommime °
g User Constraints ©
= | & Q€D Synthesize - XsT -
o View RIL Schematic —
L View Technology Schematic i
T CheckSyntax]
.¥) Generate Post-Synthesis Sim.
& €@ Implement Design
@ Translate v
& Strt E3 Desgn) Fies [Lbraries | & ‘Design Summary (Implemented) [<JEd UT_tébit.nge: 1. UT_16bit (Tech1) aJ
View by Category o088 x
Design Objects of Top Level Block Properties: (No Selection)
Instances. || pins || signals | [Name 7 Value
2 Uit 2 Uit 2 Uit

[corsde | © Sros) Worings 8 FrdmFlsResds | Viewby Category

H £ Type to search ‘“\&/

image16.png
& ISE Project Navigator (P.20131013) - EA\chapter3codesSTMJournal\UT_with_CLA_adden\UT_16bit CLA mult\UT_16bit CLA multiaxise - [UT_16bit_CLA (Tech1)] -
Fie Edt View Project Source Process Tools Window Layout Help

D2EHF L $DEX|wa| 2 A2LPBR,RIANZEISARIPELQ
Desion woex N
15| Vew: © £} tnplementaton O [Smiton |2
&) Hierarchy S
-] UT 160t CLA multi]
© €3 xcbsh-2tqg1a4 o
& [l UT_16bit_CLA - Behavioral (UT_16!
&)
@ a
el a
< >
P | 82 NoProcesses Running i
2! Processes: UT_16bit_CLA - Behavioral Yy
9| - E Design Summary/Reports
o F oommime °
% User Constraints ©
= | & Q€D Synthesize - XsT -
m View RTL Schematic —
View Technology Schematic i
€2 Check Syntax ®
.¥) Generate Post-Synthesis Sim.
Implement Design
€ Translate v
& Strt O3 Desgn () Fles [Ubrares | & Design Summary (Synthesized) =IEd UT_tebit_CLA.nge:1 UT_16bit_CLA (Techl) aJ
View by Category ©08 X
Design Objects of Top Level Block Properties: (No Selection)
Instances. || pins || signals | [Name 7 Value

& UTi6bit CLA & UTiebit CLA & UTi6bit CLA

[corsde | © Sros) Worings 8 FrdmFlsResds | Viewby Category

H £ Type to search ‘“\&/

-36864,47308]

image17.png
& ISE Project Navigator (P.20131013) - EA\chapter3codesSTMJournal\UT_with_CLA_RCA\UT_16bit CLA RCA_multi\UT_16bit_CLA RCA multiaise - [UT_16bit CLA RCA (Tech®)] -
Fie Edt View Project Source Process Tools Window Layout Help

D2EHF L $DEX|wa| 22,8 ,RIAZEISARIPELIQ
Desin woex N
5] | View: © 38 implementation O [gf] Simuiation =
&) Hierarchy
G| - € UT16bit CLARCA muti
© €3 xcbsh-2tqg1a4
& [l UT_16bit CLA RCA - Behavioral (U]
& =
0g
@ a
el a
< >
P | 82 NoProcesses Running i
P! Processes: UT_16bit CLA RCA - Behavioral ~| .
K Design Summary/Reports
= Design Utilities <]
% User Constraints ©
& Q@ Synthesize - XST -
o7 View RTL Schematic —
L View Technology Schematic i
@ CheckSyntax ®
.¥) Generate Post-Synthesis Sim.
& €@ Implement Design
@ Translate v
> Strt B3 Desgn () Fles) Lbrares | & Design Summary =IES UT_16bit_CLA_RCA.ngc: 1 UT_16bit_CLA_RCA (Techt) aJ
View by Category ©08 X
Design Objects of Top Level Block Properties: (No Selection)
Instances. || pins || signals ~ Al [Name 7 Value
& UT_16bit CLARCA & UT_16bit CLARCA L Y2IBUR

(SN
SR

1BUF
1BUF

[l corsde | © Sros) Worings [FrdmFlsResds |l Viewby Category

H P Type here to search

image18.png
& ISE Project Navigator (P.20131013) - E:\chapter3codesSTMIournal\UT_Muti_with_HA_FA\UT_16bit_multi\UT_16bit_multi.xise - [UT_16bit (Tech1)] -
Fie Edt View Project Source Process Tools Window Layout Help

DEFIE 4sDDX|wa| 223 2RIANBEBT= LRIPELI?

Desion woex N

3} [Vew: © ¥ nlementaton O [smuaton |37
& | Hierarchy =
g X
@ [>

- & U bit muti

© €3 xcbsh-2tqg1ad
& [UT_16bit - Behavioral (UT_16bit.v
&)
@ a
- a i
< >

P | €2 NoProcesses Running iy
2! Processes: UT_16bit - Behavioral s I
9| % User Constraints
= & 0@ Synthesize - XST <]
% View RTL Schematic ©
= View Technology Schematic @
m) CheckSyntax —

) Generate Post-Synthesis Sim. i

2@ Implement Design ®

€2 Generate Programming File

© Configure Torget Device

| @ Analyze Design Using ChipScope v
& Strt ©3 Desgn) Fies [Lbrares | & ‘Design Summary (Implemented) [<JEd UT_tébit.nge: 1. UT_16bit (Tech1) aJ
View by Category ©08 X
Design Objects of Top Level Block Properties: (No Selection)
Instances. “|[pins = |[signals | [Name ~ Value
& UT 160t & UT 160t & UT 16t

[corsde | © Sros) Worings 8 FrdmFlsResds | Viewby Category

H P Type here to search

-14512,49688]

image19.png
£ ISim (P.20131013) - [Default.wcfg] -

T File Edit View Simulstion Window Layout Help aix
DREIL XDEX®|0 |0k O 2ETI ARIALABLIBEx|t (@ » X[ros |69 Reaunch
instonces . 0 8 x|[Obecs oD Bx] o G
G 4 »| Smiaton Objects forar.. o
99da P »ﬂﬂime Value
Instance and Process W x15:00 1010101010101010 0101010101010101 101010101010 1010 oL
4 aray_tovit || Object Name 22| wgyisa TH0TI0011001100 X G300 L0t TI00T
:g o % ;:::g) TV DT IIIL0T TT0I0 000 00 DDV 00 T000 100D I0BOBOLTI0 TIOTITIO00 00,
@ stelogic unsig | 1 G pi3v0l 5 TI01110111011100 0000100010001000 0TI OIIIL .
2 ansa = 00000B00B005000 OITTIIIIIL G0000000C000000
2 lisal ar TATTIT1111000 0100000000000000 30000000¢ 000000
N o — GO00000000005000 GO0000000000000 w®
25 s] 0000000000000000' T TTIT11111000 oL
2 <ol i G0 100000000000 SOOI 50000000(005000
2 ansa " 1110101111111000 0111010000000000 '0DD00OOOOE 000000
L e W GO00000000005000 5010000000000 w®
5 om0 n GE00000000005000 i o
2 s = 5010001010000000 SOOI 5000000000000
By 250 1110111010111000 0111011101000000 '0DD00OOOOE 000000
% astisa GO00000000005000 5010001000000 w®
e GH00000000005000 e o
2§ silisol
24 s2lis0l
< > || B sas00 . < >
2 Instonc Bllcm™ > |[& Defautncty a
Console “oex
isim force add {/array_16bit/x} 1010101010101010 adix bin -value 0101010101010101 -racix bin ~tme 50 ns -repeat 100 s ~
atE\s'\:;mcE add {/array_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns
atE\s'\:;mcE add {/array_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns
I5m>
2nin Loos
ISim> v

B Console [] Compiatinlog @ Breskponts [98 FindinFlesResuts |gf SearchResuits

Sim Time: 3,000,000 ps

- T
H O Type here to search 29°C Mostly sunny D) F NG (oo L4

image20.png
£l 15im (P.20131013) - [Default.wefg] - X
T File Edit View Simulstion Window Layout Help aix
DREIL XDEX®|0 o0& Q=BT AR ALPB AR @ b X[10s[] | |9 Redaunch
ietence. 20 8 x| [ohecs o0 8 x| b PR
Instance and Proces: 0101010101010101 1010101010101010 1010101010101
B utton || ObjectName 0010001100 G010 0LI0TE
8 st Yuea OIDCI0010000 10T DEOTII0 01000 1000 0000110 TEIOE:Tio X000 000 0010000 0T D
e logicat r
@ Haonicuns]| . 2 vl OD0LTIOTE00 G000 IIOEETID [e
24 emotisal OD0LTIOTE00 G000 TIOEETID coiooootTiogT
By smin1s:0] 0100001110111100 0010000111011110 0100001110111
N = mlisol OD0LTIOTE00 G000 TIOEETID coiooootTiogT
e p———— OOOOTOTIIIO00 OO TIOTEE00 copootiioiii
4 addisbitresu, d16itre: 0001 TTDILI0TL 0100001 111011301 0000111101110
25 asdissitiess.. | I SI0IOOONOE 501000 000100001 cog 10000010000
24 asaatiisol GHO00 0L GH00000000 100001 Copooooo0 10000
asaalisol
b GH000000 0000 11 GH0000000 00RO CopooaD00 100001
@
@
< > < > >
& totenc.. D | < >|[E Defaitcty]
Console “oex
#isim force add {/ut_16bit/x} 1010101010101010 -radix bin -value 0101010101010101 radix bin -time 50 ns -repeat 100 ns ~
I5m>
#isim force add {/ut_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns.
I5m>
#isim force add {/ut_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns.
I5m>
2nin Loos
ISim> v
B Consoe [] Compiatinlog @ Breakpoints (9§ FindinFlesResults | g SearchResuits
Sim Time: 2,000,000 ps.

153
H P Type here to search 29°C Mostly sunny =4 o ENG (v}

06-05-2023

image21.png
£l 15im (P.20131013) - [Default.wefg] - X
T File Edit View Simulstion Window Layout Help aix
DREIL XDEX®|0 o0& QBT AR ALB AR, |0 b X[10s[] |69 Reaunch
ietence. 2O 8| [oecs o0 8x| o EEEEEITN
Simulation Objects for ut. 3
FIC) » Y
S | g Value
Instance and Proces: W x15:00 101010101, 0101010101010101 1010101010101010 010101010j010101
3 uttevitca || ObjectName 7 g yirsol TI001I0011001100 X 001001103 1T001L
@ silescricy » 2050) 001001 0100010000000 0L OIOTILI0D 501000 000 0000 DD TIOT: 10 G001000:000 PoooL o
@ staogic.unsi | B) 0000111 01000011 00100001 o0010po0
F & Socotiiy To0001E o000t comojor
% > Too0o1i OI0OLTIOTEE00 SOOI [5
E = it oot somtimtii o o
2 smanisol] 00001110 0100001110111100 0010000111011110 00010000 10TTT
55 marea i SoooiEiot OO0 OO TIOTEE00 SO0 fotiiio
2 resut1is:o] 100001110. 0100001110111100 0010000111011110 00010000 1f1101111
2 wnse o001 GH0000000 0001 GH00000000 100001 5000000000000
222l n 50000010 GH000000 0000 11 GH0000000 00RO 500000000 00001
@ = |
@3
2§ resultadd2115...
2§ resultaddsis.
SoooLEH TooOOTITOTION ODooETTIOE0T e v e
& totenc.. D | < >|[E Defaitucty]
Console “oex
isim force add {/ut_16bit_da/x} 1010101010101010 adix bin -value 0101010101010101 adix bin -tme 50 ns epeat 100 ns ~
I5m>
#isim force add {/ut_16bit_da/y} 1100110011001100 radix bin -value 0011001100110011 radix bin -time 100 ns repeat 200 ns
I5m>
#isim force add {/ut_16bit_da/y} 1100110011001100 radix bin -value 0011001100110011 radix bin -time 100 ns repeat 200 ns
I5m>
2nin Loos
ISim> v
B Console [] Compiatinlog @ Breskponts [98 FindinFlesResuts |gf SearchResuits
Sim Time: 2,000,000 ps.

16:00
06-05-2023

29°C Mostly sunny

ERURN-"

)

H P Type here to search

image22.png
£ ISim (P.20131013) - [Default.wcfg] -

T File Edit View Simulstion Window Layout Help aix
DREL XDEX®|0 o0& Q=BT AR ALB AR, |@ b X[10s[] | |9 Redaunch
ietenceson. 20 8 x| [Oecs ~ 08 x| b EYREE G
= Simdaton Objects ..
aelaca ~ < Y
BB - o Value
Instance and Process Na, W x15:00 0101010101010101 1010101010101010 0101014101010101
3 utt6bitdarca || ObjectName R yis:0) TI00110011001100 X 00 1100110011001
@ aslescrit | p Botsn oo OV T 10 G0T000 0000000 TDITIOT: 0 GO01000 D00 00O 0T TIOLT
@ oo unsone b 2 [y oo100001 o0{10000
F To000iL o000t oojooont
% OD00OLTIOTIT00 SOOI SooToofoTIotiL
2 1000110111100 000 TIOIIT 0010040 1T 0TI
2 smanisol 0100001110111100 0010000111011110 000 100§0TT10TILT
26 smasal | © 1000011101111000 0100001110111100 001000§111011110
2 resuminisiol | G100001110111100 G010000ITIOLTTI0 000000 TTIOTIIL
2 wnse GH000000TO0B01E GH00000000 100001 50000040000 10000
222l n GH000000 0000 11 GH0000000 00RO 5000004000 100001
@ =
@3
2§ resutaddzl1
2§ resuttaddsi
o000 o8 ODooETTIOE0T G000 11108110
B nstonc.. B VAD)| < >|[E Defaitcty]
Console “oex
#isim force add {/ut_16bit_da_rca/x} 1010101010101010 -radix bin -value 0101010101010101 -radix bin -time 50 ns -repeat 100 ns ~
I5m>
#isim force add {/ut_16bit_da_rca/y} 1100110011001100 -radix bin -value 0011001100110011 radix bin -time 100 ns repeat 200 ns
I5m>
#isim force add {/ut_16bit_da_rca/y} 1100110011001100 -radix bin -value 0011001100110011 radix bin -time 100 ns repeat 200 ns
I5m>
2nin Loos
ISim> v
B Consoe [] Compiatinlog @ Breakpoints (9§ FindinFlesResults | g SearchResuits
Sim Time: 2,000,000 ps.

1629
H O Type here to search 29°C Mostly sunny D) F NG oo L4

image23.png
£l 15im (P.20131013) - [Default.wefg] - X
T File Edit View Simulstion Window Layout Help aix
DREL XDEX®|0 o0& BTz AR AAPB LB x|t (@ » X [ros || retauncn
instoncesan.. 0 8 x| O # O 8] b L G
= Simdaton Objects ..
aelaca ~ < Y
BB | 5| Value
Instance and Process Na, a W x15:00 0101010101010101° 1010101010101010 01010141010101C1
& ot t6bit Object Name | B yisol TI00110011001100 X 0110011001001
;g T % s) DT000 000 0000 TIOTIITTIOTITI00 (T SRR CTERL TR TER e 00010071000 100401 0T 0T TIOTIL
3 salogicunsione|| 1. & i1 3 0000 1110111100 0T000TTIOTIII0 00I00JOTIIOTIIT
2% monisal - 0100001110111100 0010000111011110 000100§011101111
2 milts:0 ar 0100001110111100 0010000111011110 000100§011101111
E il e e omsofrsoasi
G ¥ T
52 v
e
s — —
a
“ n
@ =
s
5
P
« L
a
a
& Instanc. N[< = Defauit.wcfg [x]
Console “oex
#isim force add {/ut_16bit/x} 1010101010101010 -radix bin -value 0101010101010101 radix bin -time 50 ns -repeat 100 ns ~
I5m>
#isim force add {/ut_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns.
I5m>
#isim force add {/ut_16bit/y} 1100110011001100 -radix bin -value 0011001100110011 -radix bin -tme 100 ns -repeat 200 ns.
I5m>
2nin Loos
ISim> v
B Consoe [] Compiatinlog @ Breakpoints (9§ FindinFlesResults | g SearchResuits
Sim Time: 2,000,000 ps:

I

H P Type here to search

i @ (]

29°C Mostly sunny

16555

o e O H

image1.jpeg
X3 X2 X1 X0 Multiplicand

Y3 Y2 Y1 YO Multiplier

X3Y0 X2Y0 X1YO XOYO Partial Products

X3Y1 X2Y1 X1Y1 XO0Y1 Partial Products
X3Y2 X2Y2 X1Y2 X0Y2 Partial Products
X3Y3 X2Y3 X1Y3 X0Y3 Partial Products

P7P6 P5 P4 P3 P2 P1 PO

image2.png

image3.png
A0BO

PO

AOB1

A1BO

A1B1

